Overexpression of Mcl-1 confers multidrug resistance, whereas topoisomerase IIβ downregulation introduces mitoxantrone-specific drug resistance in acute myeloid leukemia.

نویسندگان

  • David L Hermanson
  • Sonia G Das
  • Yunfang Li
  • Chengguo Xing
چکیده

Drug resistance is a serious challenge in cancer treatment and can be acquired through multiple mechanisms. These molecular changes may introduce varied extents of resistance to different therapies and need to be characterized for optimal therapy choice. A recently discovered small molecule, ethyl-2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate) (CXL017), reveals selective cytotoxicity toward drug-resistant leukemia. A drug-resistant acute myeloid leukemia cell line, HL60/MX2, also failed to acquire resistance to CXL017 upon chronic exposure and regained sensitivity toward standard therapies. In this study, we investigated the mechanisms responsible for HL60/MX2 cells' drug resistance and the molecular basis for its resensitization. Results show that the HL60/MX2 cell line has an elevated level of Mcl-1 protein relative to the parental cell line, HL60, and its resensitized cell line, HL60/MX2/CXL017, whereas it has a reduced level of topoisomerase IIβ. Mcl-1 overexpression in HL60/MX2 cells is mainly regulated through phospho-extracellular signal-regulated protein kinases 1 and 2-mediated Mcl-1 stabilization, whereas the reduction of topoisomerase IIβ in HL60/MX2 cells is controlled through genetic downregulation. Upregulating Mcl-1 introduces multidrug resistance to standard therapies, whereas its downregulation results in significant cell death. Downregulating topoisomerase IIβ confers resistance specifically to mitoxantrone, not to other topoisomerase II inhibitors. Overall, these data suggest that Mcl-1 overexpression is a critical determinant for cross-resistance to standard therapies, whereas topoisomerase IIβ downregulation is specific to mitoxantrone resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance

Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette...

متن کامل

Cyclosporin A is a broad-spectrum multidrug resistance modulator.

PURPOSE Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp), multidrug resistance protein (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) is associated with treatment failure in acute myeloid leukemia (AML) and other malignancies. The Pgp modulator cyclosporin A has shown clinical efficacy in AML, whereas its analogue PSC-833 has not. Cyc...

متن کامل

Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines.

Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (MDRI) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported solely using mRNA data. In this study, we describe a BCRP-specific monoclonal antibody, BXP-34, obtain...

متن کامل

Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation.

Multidrug resistance (MDR), which is mediated by multiple drug efflux ATP-binding cassette (ABC) transporters, is a critical issue in the treatment of acute leukemia, with permeability glycoprotein (P-gp), multidrug resistance-associated protein 1, and breast cancer resistance protein (i.e., ABCG2) consistently being shown to be key effectors of MDR in cell line studies. Studies have demonstrat...

متن کامل

Etoposide Quinone Is a Covalent Poison of Human Topoisomerase IIβ

Etoposide is a topoisomerase II poison that is utilized to treat a broad spectrum of human cancers. Despite its wide clinical use, 2-3% of patients treated with etoposide eventually develop treatment-related acute myeloid leukemias (t-AMLs) characterized by rearrangements of the MLL gene. The molecular basis underlying the development of these t-AMLs is not well understood; however, previous st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 2013